Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(3): e14418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532624

RESUMO

Marine protected areas (MPAs) are the most widely applied tool for marine biodiversity conservation, yet many gaps remain in our understanding of their species-specific effects, partly because the socio-environmental context and spatial autocorrelation may blur and bias perceived conservation outcomes. Based on a large data set of nearly 3000 marine fish surveys spanning all tropical regions of the world, we build spatially explicit models for 658 fish species to estimate species-specific responses to protection while controlling for the environmental, habitat and socio-economic contexts experienced across their geographic ranges. We show that the species responses are highly variable, with ~40% of fishes not benefitting from protection. When investigating how traits influence species' responses, we find that rare top-predators and small herbivores benefit the most from MPAs while mid-trophic level species benefit to a lesser extent, and rare large herbivores experience adverse effects, indicating potential trophic cascades.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Animais , Ecossistema , Peixes/fisiologia , Biodiversidade
2.
Science ; 383(6686): 976-982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422147

RESUMO

Animal body-size variation influences multiple processes in marine ecosystems, but habitat heterogeneity has prevented a comprehensive assessment of size across pelagic (midwater) and benthic (seabed) systems along anthropic gradients. In this work, we derive fish size indicators from 17,411 stereo baited-video deployments to test for differences between pelagic and benthic responses to remoteness from human pressures and effectiveness of marine protected areas (MPAs). From records of 823,849 individual fish, we report divergent responses between systems, with pelagic size structure more profoundly eroded near human markets than benthic size structure, signifying greater vulnerability of pelagic systems to human pressure. Effective protection of benthic size structure can be achieved through MPAs placed near markets, thereby contributing to benthic habitat restoration and the recovery of associated fishes. By contrast, recovery of the world's largest and most endangered fishes in pelagic systems requires the creation of highly protected areas in remote locations, including on the High Seas, where protection efforts lag.


Assuntos
Tamanho Corporal , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Peixes , Animais , Oceanos e Mares
3.
Nat Commun ; 14(1): 7691, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001077

RESUMO

Elasmobranchs (sharks, rays and skates) are among the most threatened marine vertebrates, yet their global functional diversity remains largely unknown. Here, we use a trait dataset of >1000 species to assess elasmobranch functional diversity and compare it against other previously studied biodiversity facets (taxonomic and phylogenetic), to identify species- and spatial- conservation priorities. We show that threatened species encompass the full extent of functional space and disproportionately include functionally distinct species. Applying the conservation metric FUSE (Functionally Unique, Specialised, and Endangered) reveals that most top-ranking species differ from the top Evolutionarily Distinct and Globally Endangered (EDGE) list. Spatial analyses further show that elasmobranch functional richness is concentrated along continental shelves and around oceanic islands, with 18 distinguishable hotspots. These hotspots only marginally overlap with those of other biodiversity facets, reflecting a distinct spatial fingerprint of functional diversity. Elasmobranch biodiversity facets converge with fishing pressure along the coast of China, which emerges as a critical frontier in conservation. Meanwhile, several components of elasmobranch functional diversity fall in high seas and/or outside the global network of marine protected areas. Overall, our results highlight acute vulnerability of the world's elasmobranchs' functional diversity and reveal global priorities for elasmobranch functional biodiversity previously overlooked.


Assuntos
Tubarões , Animais , Filogenia , Conservação dos Recursos Naturais , Biodiversidade , Espécies em Perigo de Extinção
4.
Ecol Evol ; 11(21): 14630-14643, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765130

RESUMO

Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.

5.
Proc Biol Sci ; 288(1959): 20211574, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583586

RESUMO

Generating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the α, ß and γ components of genetic diversity, which we subsequently link to six ecological traits. We find that the α and γ components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity. The α and γ diversity components are negatively associated with species abundance recorded using underwater visual surveys and positively associated with body size. Pelagic larval duration is found to be negatively related to genetic ß diversity supporting its role as a dispersal trait in marine fishes. Deviation from the neutral theory of molecular evolution motivates further effort to understand the processes shaping genetic diversity and ultimately the diversification of the exceptional diversity of tropical reef fishes.


Assuntos
Recifes de Corais , Peixes , Animais , Biodiversidade , Tamanho Corporal , Evolução Molecular , Peixes/genética , Variação Genética
6.
Conserv Biol ; 35(6): 1944-1956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224158

RESUMO

Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species' phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.


Uso de ADN Ambiental en la Evaluación de la Diversidad Funcional y Filogenética de los Peces Resumen La evaluación del impacto de los cambios globales y la efectividad de la protección es un paso fundamental para el monitoreo de peces marinos. La mayoría de los métodos tradicionales de censos son demandantes o destructivos, por lo que las estrategias no letales y no intrusivas basadas en videograbaciones y en el ADN ambiental (ADNa) son alternativas a los censos visuales submarinos y a la pesca. Sin embargo, todavía no se conoce la habilidad que tienen estos métodos para detectar diferentes factores de la biodiversidad más allá de la diversidad taxonómica. Para los peces óseos y los elasmobranquios, comparamos el desempeño de la caracterización genética con ADNa y del video remoto de larga duración para evaluar la diversidad funcional y filogenética de las especies. Usamos diez muestras de ADNa tomadas de 30 litros de agua cada una y 25 horas de vídeos submarinos grabados durante cuatro días en la Isla Malpelo (costa del Pacífico de Colombia), un área marina protegida remota. La caracterización genética con el ADNa detectó 66% más unidades taxonómicas moleculares operacionales (UTMOs) que el video. Encontramos 66 y 43 entidades funcionales con un solo marcador de ADNa y con el video, respectivamente, y una riqueza funcional más alta para el ADNa que el video. A pesar de los vacíos en las bases de datos genéticos usadas como referencia, el ADNa también detectó una diversidad filogenética más alta que aquella en los videos; las curvas de acumulación mostraron cómo un solo transecto de ADNa detectó tanta diversidad filogenética como 25 horas de video. La caracterización genética con ADN ambiental puede usarse para censar los factores de biodiversidad de manera asequible, eficiente y certera en los sistemas marinos. Aunque las atribuciones taxonómicas todavía están limitadas por la cobertura de especies en las bases de datos genéticos de referencia, el uso de los UTMOs resalta el potencial que tiene la caracterización genética con ADNa una vez que las bases de datos de referencia sean expandidas.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Peixes/genética , Caça , Filogenia
7.
PLoS Biol ; 19(5): e3001195, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010287

RESUMO

Protected areas are the flagship management tools to secure biodiversity from anthropogenic impacts. However, the extent to which adjacent areas with distinct protection levels host different species numbers and compositions remains uncertain. Here, using reef fishes, European alpine plants, and North American birds, we show that the composition of species in adjacent Strictly Protected, Restricted, and Non-Protected areas is highly dissimilar, whereas the number of species is similar, after controlling for environmental conditions, sample size, and rarity. We find that between 12% and 15% of species are only recorded in Non-Protected areas, suggesting that a non-negligible part of regional biodiversity occurs where human activities are less regulated. For imperiled species, the proportion only recorded in Strictly Protected areas reaches 58% for fishes, 11% for birds, and 7% for plants, highlighting the fundamental and unique role of protected areas and their environmental conditions in biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitorização de Parâmetros Ecológicos/métodos , Parques Recreativos/tendências , Animais , Biodiversidade , Aves , Ecossistema , Peixes , Atividades Humanas/tendências , Humanos , Parques Recreativos/normas , Plantas
8.
Ecol Evol ; 11(7): 2956-2962, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841757

RESUMO

Monitoring large marine mammals is challenging due to their low abundances in general, an ability to move over large distances and wide geographical range sizes.The distribution of the pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales is informed by relatively rare sightings, which does not permit accurate estimates of their distribution ranges. Hence, their conservation status has long remained Data Deficient (DD) in the Red list of the International Union for Conservation of Nature (IUCN), which prevent appropriate conservation measures.Environmental DNA (eDNA) metabarcoding uses DNA traces left by organisms in their environments to detect the presence of targeted taxon, and is here proved to be useful to increase our knowledge on the distribution of rare but emblematic megafauna.Retrieving eDNA from filtered surface water provides the first detection of the Dwarf sperm whale (Kogia sima) around the remote Malpelo island (Colombia).Environmental DNA collected during oceanic missions can generate better knowledge on rare but emblematic animals even in regions that are generally well sampled for other taxa.

9.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115738

RESUMO

Contrary to most terrestrial organisms, which release their carbon into the atmosphere after death, carcasses of large marine fish sink and sequester carbon in the deep ocean. Yet, fisheries have extracted a massive amount of this "blue carbon," contributing to additional atmospheric CO2 emissions. Here, we used historical catches and fuel consumption to show that ocean fisheries have released a minimum of 0.73 billion metric tons of CO2 (GtCO2) in the atmosphere since 1950. Globally, 43.5% of the blue carbon extracted by fisheries in the high seas comes from areas that would be economically unprofitable without subsidies. Limiting blue carbon extraction by fisheries, particularly on unprofitable areas, would reduce CO2 emissions by burning less fuel and reactivating a natural carbon pump through the rebuilding of fish stocks and the increase of carcasses deadfall.

10.
Nat Commun ; 11(1): 5071, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033235

RESUMO

Identifying species that are both geographically restricted and functionally distinct, i.e. supporting rare traits and functions, is of prime importance given their risk of extinction and their potential contribution to ecosystem functioning. We use global species distributions and functional traits for birds and mammals to identify the ecologically rare species, understand their characteristics, and identify hotspots. We find that ecologically rare species are disproportionately represented in IUCN threatened categories, insufficiently covered by protected areas, and for some of them sensitive to current and future threats. While they are more abundant overall in countries with a low human development index, some countries with high human development index are also hotspots of ecological rarity, suggesting transboundary responsibility for their conservation. Altogether, these results state that more conservation emphasis should be given to ecological rarity given future environmental conditions and the need to sustain multiple ecosystem processes in the long-term.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Internacionalidade , Mamíferos/fisiologia , Animais , Geografia , Humanos , Camada de Gelo , Filogenia , Análise de Componente Principal , Especificidade da Espécie
11.
Nat Commun ; 11(1): 4438, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895381

RESUMO

Many islands are biodiversity hotspots but also extinction epicenters. In addition to strong cultural connections to nature, islanders derive a significant part of their economy and broader wellbeing from this biodiversity. Islands are thus considered as the socio-ecosystems most vulnerable to species and habitat loss. Yet, the extent and key correlates of protected area coverage on islands is still unknown. Here we assess the relative influence of climate, geography, habitat diversity, culture, resource capacity, and human footprint on terrestrial and marine protected area coverage across 2323 inhabited islands globally. We show that, on average, 22% of terrestrial and 13% of marine island areas are under protection status, but that half of all islands have no protected areas. Climate, diversity of languages, human population density and development are strongly associated with differences observed in protected area coverage among islands. Our study suggests that economic development and population growth may critically limit the amount of protection on islands.

12.
Nat Commun ; 11(1): 692, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041961

RESUMO

Genetic diversity is estimated to be declining faster than species diversity under escalating threats, but its spatial distribution remains poorly documented at the global scale. Theory predicts that similar processes should foster congruent spatial patterns of genetic and species diversity, but empirical studies are scarce. Using a mined database of 50,588 georeferenced mitochondrial DNA barcode sequences (COI) for 3,815 marine and 1,611 freshwater fish species respectively, we examined the correlation between genetic diversity and species diversity and their global distributions in relation to climate and geography. Genetic diversity showed a clear spatial organisation, but a weak association with species diversity for both marine and freshwater species. We found a predominantly positive relationship between genetic diversity and sea surface temperature for marine species. Genetic diversity of freshwater species varied primarily across the regional basins and was negatively correlated with average river slope. The detection of genetic diversity patterns suggests that conservation measures should consider mismatching spatial signals across multiple facets of biodiversity.


Assuntos
Biodiversidade , Peixes/genética , Variação Genética , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , DNA Mitocondrial/genética , Bases de Dados Genéticas , Meio Ambiente , Peixes/classificação , Geografia
13.
Ecol Lett ; 19(4): 351-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26879898

RESUMO

The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low-conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Animais , Humanos , Fatores de Tempo , Viagem
14.
Glob Chang Biol ; 20(3): 730-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24214576

RESUMO

Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food-web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food-web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080-2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large-scale impacts of climate change on marine food-web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems.


Assuntos
Biodiversidade , Mudança Climática , Peixes , Cadeia Alimentar , Animais , Modelos Teóricos
15.
Curr Biol ; 21(12): 1044-50, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21658949

RESUMO

The Mediterranean Sea (0.82% of the global oceanic surface) holds 4%-18% of all known marine species (~17,000), with a high proportion of endemism [1, 2]. This exceptional biodiversity is under severe threats [1] but benefits from a system of 100 marine protected areas (MPAs). Surprisingly, the spatial congruence of fish biodiversity hot spots with this MPA system and the areas of high fishing pressure has not been assessed. Moreover, evolutionary and functional breadth of species assemblages [3] has been largely overlooked in marine systems. Here we adopted a multifaceted approach to biodiversity by considering the species richness of total, endemic, and threatened coastal fish assemblages as well as their functional and phylogenetic diversity. We show that these fish biodiversity components are spatially mismatched. The MPA system covers a small surface of the Mediterranean (0.4%) and is spatially congruent with the hot spots of all taxonomic components of fish diversity. However, it misses hot spots of functional and phylogenetic diversity. In addition, hot spots of endemic species richness and phylogenetic diversity are spatially congruent with hot spots of fishery impact. Our results highlight that future conservation strategies and assessment efficiency of current reserve systems will need to be revisited after deconstructing the different components of biodiversity.


Assuntos
Biodiversidade , Peixes/classificação , Animais , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...